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Abstract. Performance of real-time applications on network communi-
cation channels are strongly related to losses and temporal delays. Sev-
eral studies showed that these network features may be correlated and
present a certain degree of memory such as bursty losses and delays.
The memory and the statistical dependence between losses and tempo-
ral delays suggest that the channel may be well modelled by a Dynamic
Bayesian Network with an appropriate hidden variable that captures the
current state of the network. In this paper we propose a Bayesian model
that, trained with a version of the EM-algorithm, seems to be effective
in modelling typical channel behaviors.

1 Introduction

Gilbert and Elliott works [1][2] on modelling burst-error channels for bit trans-
mission showed how a simple 2-state Hidden Markov Model (HMM) was effective
in characterizing real communication channels. As in the case of bit-transmission
channels, end-to-end packet channels show burst-loss behavior.

Jiang and Schulzrinne [9] investigated lossy behavior of packet channels find-
ing that a Markov model is not able to describe appropriately the inter-loss be-
havior of channels. They also found that delays manifest temporal dependency,
i.e. they should not be assumed as a memoryless phenomenon.

Salamatian and Vaton [10] found that a HMM trained with experimental
data seems to capture channel loss behavior. They found that a HMM with 2 to
4 hidden states fits well experimental data.

These works suggest us that a Bayesian model should be effective in capturing
the dynamic behavior of losses and delays on end-to-end packet channels. Our
objective is to build a comprehensive model that jointly describes losses and
delays.
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2 The Model

Fig.1 shows our reference model with a periodic source traffic with inter-
departure period T and fixed packet size. The network randomly cancels and
delays packets according to current congestion.
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Fig. 1. End-to-end packet channel.

Let us number transmitted packets, n = 1, 2, . . ., and let us denote with tn
and τn the arrival time and the accumulated delay of the n-th packet respectively,
i.e.

τn = tn − nT. (1)

We want to model the system in a way which carries information on cur-
rent congestion that may determine variable loss rates and average delays. Loss
phenomenon shows a bursty behavior, i.e. it cannot be thought as a memoryless
stochastic process. Moreover, several works [6][8][9] showed that temporal delays
seem not to be well modelled as independent identically distributed (iid) random
variables, i.e. also delays, as losses, present a certain degree of memory. In real
communication networks, losses and delays are strongly correlated; it has been
observed [9] that in proximity of a loss, larger delays tend to occur.

Memory presence in phenomena we want to model suggests us to introduce
a hidden state variable that stochastically influence losses and delays. State
variable is hidden because our knowledge about it comes from observation of
loss and delays, and there is no way to access directly to it.

In the following xn, ln and τn respectively will denote “state”, “loss” and
“delay” at time nT ,

xn ∈ {s1, s2, . . . , sN}
ln ∈ {v1, v2} (2)

where si is the i-th state of the network and v1 (resp. v2) means the absence
(resp. presence) of a loss.

It should be noted that being in the presence of a loss, the delay has no real
value, it can be considered infinite. For easy use we consider,

τn/{ln = v1} ∈ [0, +∞)
τn/{ln = v2} = −1 (3)

Our reference Bayesian model is shown in Fig.2 where the arrows represent
statistical dependence among variables. More specifically, the set of parameters
characterizing the model is Λ = {A,p, f1(τ), f2(τ), . . . , fN (τ)}, where
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Fig. 2. The Bayesian model for packet channel.
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Fig. 3. Hidden Markov Model.

– A is the state transition matrix, i.e.

aij = Pr(xn+1 = sj/xn = si)
j∈{1,2,...,N}
i∈{1,2,...,N} (4)

– p is the loss probability vector, i.e.
{

pi = Pr(ln = v1/xn = si)
1 − pi = Pr(ln = v2/xn = si) i∈{1,2,...,N} (5)

– fi(τ) is the delay conditional pdf, i.e.

Pr(τn > t/xn = si, ln = v1) =
∫ +∞

t

fi(τ)dτ (6)

The model can be reduced to a HMM, as seen on Fig.3, with a hidden variable
xn and an observable variable yn that represents jointly loss and delay as

yn =
{

τn if ln = v1
−1 if ln = v2

(7)

Summarizing:

– xn is a discrete random variable whose dynamic behavior follows Eq.(4)
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– yn is a hybrid random variable characterized, given {xn = si}, by the
following conditional pdf,

bi(t) = pifi(t) + (1 − pi)δ(t + 1) (8)

It should be noted, as shown in Fig.4 that yn is a hybrid variable obtained as
a mixture of two components (one continuous, one discrete), when introduced
the “trick” of associating τn = −1 to a loss in order to have non-overlapping dis-
tributions for continuous and discrete components. The continuous component
describes network delays behavior in the absence of losses, whereas the discrete
component describes losses behavior.
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Fig. 4. An example of the conditional pdf bi(t) for the hybrid variable yn.

If π is the stationary state probability distribution, i.e.

πi = lim
n→∞{Pr(xn = si)} (9)

the loss probability and the average delay of the model are:

Pr(loss) =
N∑

i=1

πi(1 − pi) (10)

delay =
N∑

i=1

πi

∫ +∞

0
tfi(t)dt (11)

3 Learning Parameters of the Model

The Expectation-Maximization algorithm [7] is an optimization procedure
searching for a new set of parameters for a stochastic model according to im-
provements of the likelihood of a given sequence of observable variables. For
structures like HMM of Fig.3 this optimization technique reduces to the Forward-
Backward algorithm [3][4][5] studied for discrete and continuous observable vari-
ables with a broad class of allowed conditional pdf.
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More specifically, given a sequence of observable variables y =
(y1, y2, . . . , yK)T , and a set of parameters λ = {A,p, µ}, where

µi = E [τn/{xn = si}] =
∫

tfi(t)dt (12)

the update λ̂ = {Â, p̂, µ̂} of λ follows the recursions

âij =
∑K−1

k=1 αk(i)aijbj(yk+1)βk+1(j)∑K−1
k=1 αk(i)βk(i)

(13)

p̂i =
∑K

k=1 ρk(i)βk(i)∑K−1
k=1 αk(i)βk(i)

(14)

µ̂i =
∑K

k=1 ρk(i)βk(i)yk∑K−1
k=1 ρk(i)βk(i)

(15)

where

αk(j) =
N∑

i=1

αk−1(i)aijbj(yk) (16)

βk(i) =
N∑

j=1

aijbj(yk+1)βk+1(j) (17)

are the forward and backward partial likelihood, and where

ρk(j) =
N∑

i=1

αk−1(i)aijpj
∂bj(t)
∂pj

∣∣∣∣
t=yk

(18)

The iteratively procedure will reach a local maximum point of the likelihood
function,

L(y; λ) = Pr(y/λ) =
N∑

i=1

αK(i) (19)

which typically depends on the starting point λ. When necessary, repeated starts
with different initial conditions provide the global solution.

The problem of the Dirac-impulse in the conditional pdf (8) was avoided
considering a modified function

b̃i(t) = pifi(t) + (1 − pi)g(t) (20)

where g(t) is any pdf such that g(t) = 0 , ∀ t ≥ 0, in order to have non-
overlapping supports between fi(t) and g(t). Obviously, while the set {fi(t)}N

i=1
will be adjusted by the iterative procedure, g(t) will remain unchanged, as only
its area is relevant. This means that losses, in the algorithm have to be random-
ized according to g(t).
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Fig. 5. Portion of a measured trace on real network.
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Fig. 6. Log-likelihood trend.

4 Experimental Results

Measures of losses and delays have been performed between the Dipartimento di
Informatica e Sistemistica, Universitá di Napoli “Federico II”, and the Diparti-
mento di Ingegneria dell’Informazione, Seconda Universitá di Napoli, using the
software Internet Traffic Generator (ITG) [12].

ITG, a new version of Mtools [11], can generate both traffic at transport layer
and “layer 4-7”. It implements both TCP and UDP traffic generation according
to several statistical distributions both for inter-departure times and packet sizes.
ITG allows simulations of complex traffic sources furnishing information about
transmitted and received packets.

The characteristics of generated traffic are: inter-departure period T = 5 ·
10−3 sec. and packet size of 1000 bytes, (bit − rate = 1.6 Mbps).

A typical trace obtained is shown in Fig.5(a), while in Fig.5(b) the corre-
sponding sequence used for learning procedure is shown.

The learning procedure was applied on observable sequences of 500 to 1000
samples, finding in reasonable time (10sec.) acceptable estimation of network be-
havior. Fig.6 shows a typical trend of the log-likelihood obtained in the learning
procedure.

Our choice of conditional pdf’s for delays was Gamma distributions, as sug-
gested by several works [6][8],

fi(t) =
tγi−1e−t

Γ (γi)
u(t), (21)

while losses was randomized according to a uniform distribution, i.e.
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Table 1. Example of parameters learning with a 2-states model.

Pr(loss) delay

measured 0.494 543.69 ms
starting model 0.117 131.06 ms

trained model (10iterations) 0.495 492.58 ms
trained model (20iterations) 0.494 565.81 ms

Table 2. Example of parameters learning with a 3-states model.

Pr(loss) delay

measured 0.494 543.69 ms
starting model 0.365 143.12 ms

trained model (10iterations) 0.495 492.58 ms
trained model (20iterations) 0.494 536.92 ms

g(t) =
{

1
0

t ∈ [−3/2,−1/2]
t ∈ R − [−3/2,−1/2] (22)

Tabs.1 and 2 show loss probability and average delay of a measured trace
used as training sequence, and of a model with 2 and 3 states before and after
learning procedure, according to (10),(11).

Actually we are investigating on generalization capability. Preliminary tests
show that the model is able to follow the channel behavior until its characteristics
can be considered almost stationary.

5 Conclusion and Future Work

In this paper we have proposed a Bayesian Network whose objective is to model
end-to-end packet channel behavior, jointly capturing losses and delays charac-
teristics. The proposed model generalizes the HMM description of real channels
introducing a memory stochastic modelling of delays. Preliminary results are en-
couraging and future works will be focused on model improvements and coding
strategies.

Acknowledgement

This work has been carried out partially under the financial support of the Min-
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